×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

We investigate the thermodynamics and the classical and semiclassical
dynamics of two-dimensional ($2\text{D}$), asymptotically flat, nonsingular
dilatonic black holes. They are characterized by a de Sitter core, allowing for
the smearing of the classical singularity, and by the presence of two horizons
with a related extremal configuration. For concreteness, we focus on a
$2\text{D}$ version of the Hayward black hole. We find a second order
thermodynamic phase transition, separating large unstable black holes from
stable configurations close to extremality. We first describe the black-hole
evaporation process using a quasistatic approximation and we show that it ends
in the extremal configuration in an infinite amount of time. We go beyond the
quasistatic approximation by numerically integrating the field equations for
$2\text{D}$ dilaton gravity coupled to $N$ massless scalar fields, describing
the radiation. We find that the inclusion of large backreaction effects ($N \gg
1$) allows for an end-point extremal configuration after a finite evaporation
time. Finally, we evaluate the entanglement entropy (EE) of the radiation in
the quasistatic approximation and construct the relative Page curve. We find
that the EE initially grows, reaches a maximum and then goes down towards zero,
in agreement with previous results in the literature. Despite the breakdown of
the semiclassical approximation prevents the description of the evaporation
process near extremality, we have a clear indication that the end point of the
evaporation is a regular, extremal state with vanishing EE of the radiation.
This means that the nonunitary evolution, which commonly characterizes the
evaporation of singular black holes, could be traced back to the presence of
the singularity.

Click here to read this post out
ID: 1059; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 17, 2023, 7:36 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 1086
CC:
No creative common's license
Comments: